第六章 流数术与无穷级数(2)
当N无限大的时候,矩形的面积之和S就会等于那个不规则图形的面积。此时,1/2n和1/6n2就是无限小,完全可以舍去。 于是这个不规则图形的面积就显而易了:S=1/3。 ——无限大、无限小 艾拉把刚刚出现的这两个概念低声念了一遍。在数学运算中出现了无限的概念,让她多少感到有些不适。 她甩甩头,把这种不适感抛到脑后,然后将函数式由y=x2改成了y=x3 虽然只是轻微的改动,但要求出面积的难度立刻大了数倍。这次,艾拉写了整整两页纸,也没能向先前一样把公式化简。 “为什么一涉及曲线,就总是会出现无限啊!” 艾拉抛下笔,抱着头哀嚎了起来。 无限,这是所有数学家都难以跨越的深渊。 抛物线和圆都还只是最简单的曲线,只不过是从无限的深渊边探出来的一根小小的树枝。艾拉抓住了这根小树枝。可当继续下望时,她看到的是更为恐怖的深渊——利用坐标轴和函数式,她找到了许许多多阿基米德根本无法描述的复杂曲线。 她发现了它们,却根本无法驾驭它们。这仿佛是神明的一个警告:人啊,做你该做的事! 无限,这是人类绝对不能涉足的禁区。 “毕达哥拉斯学派的魔法也太难学了!” 艾拉又一次大喊了起来。 “小声点!” 亚伯拉罕正教会的人纷纷向艾拉投来了不满的视线,吓得艾拉慌忙捂住了嘴巴。